

				Sub	ject	Cod	le: k	COE	2038
Roll No:									

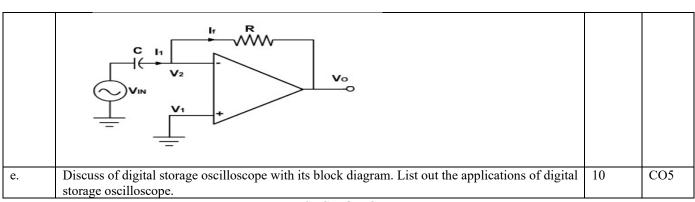
Printed Page: 1 of 2

B TECH (SEM-III) THEORY EXAMINATION 2020-21 ELECTRONICS ENGINEERING

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A


1.	Attempt all questions in brief.	$2 \times 10 = 20$			
Q no.	Question	Marks	CO		
a.	Compare drift current with diffusion current?	2	CO1		
b.	State the advantages and disadvantages of LCD.	2	CO1		
c.	Define ripple factor. List the values of ripple factor for HWR, FWR & Bridge rectifier?	2	CO2		
d.	What is the significance of using regulator in power supplies?	2	CO2		
e.	Define pinch off. Why do depletion regions do not touch of pinch off?	2	CO3		
f.	What do you mean by stability factor?	2	CO3		
g.	Define input offset voltage.	2	CO4		
h.	What do you mean by summing amplifier?	2	CO4		
i.	State the advantages of digital voltmeters.	2	CO5		
j.	What are the applications of digital multimeter (DMM)?	2	CO5		

SECTION B

	SECTION B		
2.		$3 \times 10 = 3$	
Q no.	Question	Marks	CO
a.	Explain the Concepts of Transition capacitance, Diffusion capacitance with the mathematical expression and diagrams.	k 0itable	CO1
b.	Determine v_o for the network of figure, for the input indicated. $C = 1 \mu F$ $R = 1000 k\Omega$	10	CO2
c.	A dc analysis of the source-follower network of figure results in $V_{GSQ}=-2.86V$ and $I_{DQ}=4.56mA$ (i) Determine g_m (ii) Find r_d (iii) Determine Z_i (iv) Calculate Z_o with and without r_d (v) Determine A_v with and without r_d $V_{DSS}=16\text{mA}$ $V_{P}=-4\text{V}$ $V_{DSS}=30\text{mS}$	10	CO3
d.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	s 10	CO4
	advanages and disadvantages.		

Printed Page: 2 of 2
Subject Code: KOE038
Roll No:

SECTION C

3. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Define Tunneling phenomenon. Explain the principle of operation of operation and characteristics of Tunnel Diode with the help of energy band diagrams.	10	CO1
b.	How LED is different with conventional diode? Explain its working principle with suitable diagrams.	10	CO1

4. Attempt any *one* part of the following:

	a.	With a neat circuit diagram and waveforms explain the working of full wave bridge rectifier and	10	CO2
Į		show that its ripple factor is 0.48.		
	b.	For the Zener diode circuit shown in figure, determine V_L , V_R , $I_Z \& R$.	10	CO2
		R		
		+ VR - JIZ		
		$V_{i=16V} + V_{Z_1} = 10V + $		
		> -30 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×		
		P _{ZM} =30mw/		
		$v_{\rm L}$		1
١				1

5. Attempt any *one* part of the following:

	recempt any one part of the following		
a.	Draw and explain construction and operation of Enhancement mode MOSFET with its	10	CO3
b.	Characteristics? What is the various biasing schoole for BJT? Which one is best among them and why? Determine the DC bias voltage VCEQ and the current IcQ for the voltage-divider configuration of given figure: 18 V V V V V V V V V	10	CO3

6. Attempt any *one* part of the following:

						-										
a.	What	do yo	u mea	ın by	inverting	amplifi	ier? For the	e inv	erting a	nplifi	er if the	inp	ut volta	ges are	10	CO4
	3V, 5V	and	1 7V	and	corresp	onding	resistance	es i	3 ₩Ω, 5 <i>K</i>	Ω an	d 7 $K\Omega$:	respecti	vely	and	
	feedback resistor is $5K\Omega$. Calculate the output voltage.															
b.	Draw	the ci	rcuit (of clo	sed loop	differer	ntial amplif	ier ı	using on	e op-a	mp. Dei	rive	the exp	ression	10	CO4
	of its	outout	volta	ge.	_		_		_	_	_		_			

7. Attempt any *one* part of the following:

a.	Explain the following in context of CR	silt0vity, (i í 0)O5
	Vertical and horizontal deflection plates, (iv) Lissajous figure., (v) CRT		
b.	Explain RAMP type digital multimeters with suitable diagram. How it works S	\$6ate the	eCO5
	advantages of ramp type DMM.		